Real-time tracking the Li+-ion transition behavior and dynamics in solid Poly(vinyl alcohol)/LiClO4 electrolytes

نویسندگان

  • Lixia Bao
  • Xin Zou
  • Xin Luo
  • Yanlei Pu
  • Jiliang Wang
  • Jingxin Lei
چکیده

To delicately track the Li-ion transport in SPEs under an external electric field (EF) is a big challenge, considering the limitation of most spectroscopic methods to monitor the real-time conformational changes and track the dynamic process. Herein, real-time Li-ion transition behavior and transport dynamics in typical poly(vinyl alcohol)/LiClO4 electrolytes under an external EF have been studied by combining time-resolved Fourier transform infrared (FTIR) with two-dimensional correlation FTIR spectroscopy. Results show that no migration of Li-ions has been detected when the time scale of the EF loading is at nanosecond (less than 200 ns). However, for the first time, Li-ions have been found to significantly transfer along the EF direction as the time scale enhances to microsecond order of magnitude and the migration period is less than 10 microseconds. The Li+ migration in the SPEs under an EF is a complicated process including quasi-periodic dissociation and coordination effects between Li-ion carriers and polymeric chains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionic conductivity enhancement studies of composite polymer electrolyte based on poly (vinyl alcohol)-lithium perchlorate-titanium oxide

In this study, poly (vinyl alcohol) (PVA), lithium perchlorate (LiClO4) and nano-sized titanium oxide (TiO2) were employed as host polymer, dopant salt and inorganic filler respectively. The influence of the inorganic filler on ionic conductivity, structural and morphological properties of the polymer matrix are investigated. Ionic conductivity of polymer electrolytes is measured by ac-impedanc...

متن کامل

Magnetic investigation of microwave synthesized and thermal stable poly vinyl alcohol-cobalt ferrite nanocomposites

We synthesized CoFe2O4 nanoparticles using heating in various times by simple microwave method at power about 600W. Water, ethylene glycol and their combination were used as solvent. X-ray diffraction pattern(XRD) analysis was performed for evaluation of structural characterization of samples. We also used scanning electron microscopy (SEM) to evaluate the effects of various parameters of heati...

متن کامل

Fabrication of Polyvinyl Alcohol/Kefiran Nanofibers Membrane Using Electrospinning

The Poly (vinyl alcohol)/Kefirane nanofiber membrane was successfully fabricated for the firsttime using electrospinning of the polyvinyl alcohol (PVA) and Kefirane blend solution. Scanningelectron microscope (SEM), attenuated total reflectance Fourier transform infrared (ATRFT-IR), and differential scanning calorimetry (DSC) were used to characterize the electrospunPoly (vinyl alcohol)/Kefiran...

متن کامل

PVDF-HFP/PVC Blend Based Lithium Ion Conducting Polymer Electrolytes

Abstract. Flexible free standing polymer electrolyte films have been successfully prepared using a blend of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly(vinyl chloride) (PVC) doped with lithium perchlorate (LiClO4). The conductivity of the film was influenced by salt concentration and the degree of crystallinity. An optimum room temperature conductivity obtained was 2.10...

متن کامل

Effect of Ethylene Carbonate (EC) Plasticizer on Poly (Vinyl Chloride)-Liquid 50% Epoxidised Natural Rubber (LENR50) Based Polymer Electrolyte

In this research, new thin film of a free standing electrolyte film containing poly(vinyl) chloride (PVC), 50% liquid epoxidized natural rubber (LENR50), Ethylene carbonate (EC) blends as a host for the electrolyte which was doped with lithium perchlorate (LiClO4) as the dopant salt was successfully prepared with solution casting technique. The polymer electrolyte of PVC-LENR50-EC-LiClO4 was ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017